ODB2 Pinout koodid kõik

OBD2 end avatud & laiendada kaabel kontaktide paigutus ,Palun kliki Siin

Standard OBD2 Pinout

Soure:wiki

Režiimid

On 10 kirjeldatud OBD-II Viimane standard SAE J1979 töötamiseks. Need on järgmised:

Režiim (Hex) Kirjeldus
01 Saate kuvada praeguse andmed
02 Näita freeze frame data
03 Näita salvestatud diagnostilised veakoodid
04 Selge diagnostilised veakoodid ja salvestatud väärtused
05 Testi tulemused, hapniku sensor seire (Mittesuitsetajate on võimalik)
06 Testi tulemused, muu osa/süsteemi jälgimine (Testi tulemused, hapniku anduri saab üksnes järelevalve)
07 Näita ootel diagnostilised veakoodid (praeguse või viimase sõidutsükkel avastatud)
08 Rongisisene osa/süsteemi toimimise kontrolli
09 Taotleda sõidukite
0A Püsiva Diagnostilised veakoodid (Tml) (Puhastatud tml)

Sõidukitootjad ei nõutaks kõigi transpordiliikide. Iga tootja võib kindlaks määrata täiendavad režiimid eespool #9 (nt: režiim 22 Ford/GM SAE J2190 määratletud, režiim 21 Toyota) muud teavet nt jaoks. veojõu aku pinge on hübriidelektrisõiduk (HEV).[2]

Standard PID

Järgmine tabel näitab OBD-II standard PID SAE J1979 määratletud. Eeldatav vastus iga PID antakse, Kuidas tõlkida vastuse usaldusväärsed andmed koos. Uuesti, Kõik sõidukid toetab kõiki PID ja ei saa olla tootja määratletud kohandatud PID, mis on määratletud standardi OBD-II.

Märkus et režiimid 1 ja 2 on põhimõtteliselt identsed, välja arvatud sellisele 1 Praegune teave, arvestades, et režiimis 2 annab tehtud asi kui viimati diagnostika kood loodi andmete hetktõmmis. Erandiks on PID 01, mis on ainult režiimis saadaval 1, ja PID 02, mis on ainult režiimis saadaval 2. Kui režiim 2 PID 02 Tagastab nulli, siis ei ole hetktõmmis ja muu režiimi 2 andmed on mõttetu.

Bit-kodeeritud märke kasutades, kogused nagu C4 tähendab bit 4 andmed baitide C:. Iga natuke numerated: 0 et 7, nii 7 bitt on ja 0 bitt on.

A B C D
A7 A6 A5 A4 A3 A2 A1 A0 B7 B6 B5 B4 B3 B2 B1 B0 C7 C6 C5 C4 C3 C2 C1 C0 D7 D6 D5 D4 D3 D2 D1 D0

Režiim 01

PID
(Hex)
PID
(Dets)
Tagastatud baiti andmeid Kirjeldus Min väärtus Max väärtus Üksused Valem[a]
00 0 4 PID toetatud [01 – 20] Kodeeritud bit [A7. D0] == [PID $01.. PID $20] Vt allpool
01 1 4 Monitor staatus pärast tml tühjendatud. (Sisaldab rikke märgutuli (MIL) ning tml arvu.) Kodeeritud bit. Vt allpool
02 2 2 Külmutada DTC
03 3 2 Kütuse süsteemi olek Kodeeritud bit. Vt allpool
04 4 1 Arvutatud mootori koormus 0 100 % {\displaystyle {\tfrac {100}{255}}A} (või {\displaystyle {\tfrac {A}{2.55}}})
05 5 1 Mootori jahutusvedeliku temperatuur -40 215 ° C {\displaystyle A-40}
06 6 1 Lühikese aja jooksul kütuse doseerimise — panga 1 -100 (Vähendada kütuse: Liiga rikas) 99.2 (Lisada kütust: Liiga lahja) %
{\displaystyle {\jaoks {100}{128}}A-100}

(või {\displaystyle {\tfrac {A}{1.28}}-100} )

07 7 1 Pikaajaline kütuse doseerimine-Pank 1
08 8 1 Lühikese aja jooksul kütuse doseerimise — panga 2
09 9 1 Pikaajaline kütuse doseerimine-Pank 2
0A 10 1 Kütuse rõhk (ülerõhk) 0 765 kPa {\displaystyle 3A}
0B 11 1 Sisselasketorustiku absoluutne surve 0 255 kPa {\displaystyle A}
0C 12 2 Mootori p/min 0 16,383.75 p/min {\displaystyle {\jaoks {256A + B}{4}}}
0D 13 1 Sõiduki kiirus 0 255 km/h {\displaystyle A}
0E 14 1 Ajastus ette -64 63.5 ° enne TDC {\displaystyle {\jaoks {A}{2}}-64}
0F 15 1 Siseneva õhuvoolu temperatuuri -40 215 ° C {\displaystyle A-40}
10 16 2 MAF kulu 0 655.35 g/s {\displaystyle {\jaoks {256A + B}{100}}}
11 17 1 Seguklapp 0 100 % {\displaystyle {\tfrac {100}{255}}A}
12 18 1 Käskis teisese õhu seisund Kodeeritud bit. Vt allpool
13 19 1 Oxygen Sensor käesoleva (aastal 2 pangad) [A0. A3] == Pank 1, Andurid 1-4. [A4... A7] == Pank 2…
14 20 2 Hapniku Sensor 1
A: Pinge
B: Lühiajaline kütuse doseerimise
0
-100
1.275
99.2
v %
{\displaystyle {\jaoks {A}{200}}}

{\displaystyle {\jaoks {100}{128}}B-100}

(Kui B == $FF, andur ei kasutata trimmi arvutamine)

15 21 2 Hapniku Sensor 2
A: Pinge
B: Lühiajaline kütuse doseerimise
16 22 2 Hapniku Sensor 3
A: Pinge
B: Lühiajaline kütuse doseerimise
17 23 2 Hapniku Sensor 4
A: Pinge
B: Lühiajaline kütuse doseerimise
18 24 2 Hapniku Sensor 5
A: Pinge
B: Lühiajaline kütuse doseerimise
19 25 2 Hapniku Sensor 6
A: Pinge
B: Lühiajaline kütuse doseerimise
1A 26 2 Hapniku Sensor 7
A: Pinge
B: Lühiajaline kütuse doseerimise
1B 27 2 Hapniku Sensor 8
A: Pinge
B: Lühiajaline kütuse doseerimise
1C 28 1 Sõiduk vastab OBD standardid Kodeeritud bit. Vt allpool
1D 29 1 Oxygen Sensor käesoleva (aastal 4 pangad) Sarnane PID 13, Aga [A0. A7] == [B1S1, B1S2, B2S1, B2S2, B3S1, B3S2, B4S1, B4S2]
1E 30 1 Abistava sisendi olek A0 == Võimu startida (PTO) olek (1 == aktiivne)
[A1. A7] kasutamata
1F 31 2 Kuna mootor käivitu Käitusaeg 0 65,535 sekundit {\displaystyle 256A + B}
20 32 4 PID toetatud [21 – 40] Kodeeritud bit [A7. D0] == [PID $21.. PID $40] Vt allpool
21 33 2 Läbitud teepikkuse rikke märgutuli (MIL) kohta 0 65,535 km {\displaystyle 256A + B}
22 34 2 Kütuse raudtee Surve (võrreldes sisselasketorustiku rõhku) 0 5177.265 kPa {\displaystyle 0.079(256A + B)}
23 35 2 Kütuse raudtee Siserõhu (diisel, või bensiini otsesissepritse) 0 655,350 kPa {\displaystyle 10(256A + B)}
24 36 4 Hapniku Sensor 1
AB: Kütuse-õhu samaväärsuse suhe
CD: Pinge
0
0
< 2
< 8
suhe
V
{\displaystyle {\jaoks {2}{65536}}(256A + B)}

{\displaystyle {\jaoks {8}{65536}}(256C + D)}

25 37 4 Hapniku Sensor 2
AB: Kütuse-õhu samaväärsuse suhe
CD: Pinge
26 38 4 Hapniku Sensor 3
AB: Kütuse-õhu samaväärsuse suhe
CD: Pinge
27 39 4 Hapniku Sensor 4
AB: Kütuse-õhu samaväärsuse suhe
CD: Pinge
28 40 4 Hapniku Sensor 5
AB: Kütuse-õhu samaväärsuse suhe
CD: Pinge
29 41 4 Hapniku Sensor 6
AB: Kütuse-õhu samaväärsuse suhe
CD: Pinge
2A 42 4 Hapniku Sensor 7
AB: Kütuse-õhu samaväärsuse suhe
CD: Pinge
2B 43 4 Hapniku Sensor 8
AB: Kütuse-õhu samaväärsuse suhe
CD: Pinge
2C 44 1 Käskis EGR 0 100 % {\displaystyle {\tfrac {100}{255}}A}
2D 45 1 EGR viga -100 99.2 % {\displaystyle {\tfrac {100}{128}}A-100}
2E 46 1 Käskis kütuseaurude purge 0 100 % {\displaystyle {\tfrac {100}{255}}A}
2F 47 1 Kütusepaagi taseme sisend 0 100 % {\displaystyle {\tfrac {100}{255}}A}
30 48 1 Sooja-ups, sest koodid kustutatud 0 255 arv {\displaystyle A}
31 49 2 Läbitud Kuna koodid kustutatud 0 65,535 km {\displaystyle 256A + B}
32 50 2 Evap. Süsteemi küllastunud auru rõhk -8,192 8191.75 PA {\displaystyle {\jaoks {256A + B}{4}}}(AB on kaks 's täiendab allkirjastatud)[3]
33 51 1 Absoluutne õhurõhk 0 255 kPa {\displaystyle A}
34 52 4 Hapniku Sensor 1
AB: Kütuse-õhu samaväärsuse suhe
CD: Hoovus
0
-128
< 2
<128
suhe
mA
{\displaystyle {\jaoks {2}{65536}}(256A + B)}

{\displaystyle {\jaoks {256C + D}{256}}-128}

või {\displaystyle C +{\jaoks {D}{256}}-128}

35 53 4 Hapniku Sensor 2
AB: Kütuse-õhu samaväärsuse suhe
CD: Hoovus
36 54 4 Hapniku Sensor 3
AB: Kütuse-õhu samaväärsuse suhe
CD: Hoovus
37 55 4 Hapniku Sensor 4
AB: Kütuse-õhu samaväärsuse suhe
CD: Hoovus
38 56 4 Hapniku Sensor 5
AB: Kütuse-õhu samaväärsuse suhe
CD: Hoovus
39 57 4 Hapniku Sensor 6
AB: Kütuse-õhu samaväärsuse suhe
CD: Hoovus
3A 58 4 Hapniku Sensor 7
AB: Kütuse-õhu samaväärsuse suhe
CD: Hoovus
3B 59 4 Hapniku Sensor 8
AB: Kütuse-õhu samaväärsuse suhe
CD: Hoovus
3C 60 2 Katalüsaatori temperatuur: Pank 1, Andur 1 -40 6,513.5 ° C {\displaystyle {\jaoks {256A + B}{10}}-40}
3D 61 2 Katalüsaatori temperatuur: Pank 2, Andur 1
3E 62 2 Katalüsaatori temperatuur: Pank 1, Andur 2
3F 63 2 Katalüsaatori temperatuur: Pank 2, Andur 2
40 64 4 PID toetatud [41 – 60] Kodeeritud bit [A7. D0] == [PID $41.. PID $60] Vt allpool
41 65 4 Monitor staatus selle draivi tsükli Kodeeritud bit. Vt allpool
42 66 2 Moodul pinget 0 65.535 V {\displaystyle {\jaoks {256A + B}{1000}}}
43 67 2 Absoluutne koormus 0 25,700 % {\displaystyle {\tfrac {100}{255}}(256A + B)}
44 68 2 Kütuse-õhu käskis samaväärsuse suhe 0 < 2 suhe {\displaystyle {\tfrac {2}{65536}}(256A + B)}
45 69 1 Suhteline seguklapp 0 100 % {\displaystyle {\tfrac {100}{255}}A}
46 70 1 Välisõhu temperatuur -40 215 ° C {\displaystyle A-40}
47 71 1 Absoluutne seguklapp B 0 100 % {\displaystyle {\jaoks {100}{255}}A}
48 72 1 Absoluutne seguklapp C
49 73 1 Gaasi pedaali asend D
4A 74 1 Gaasi pedaali asend E
4B 75 1 Gaasi pedaali asend F
4C 76 1 Käskis seguklapi ajami
4D 77 2 Aeg, MIL koos sõitma 0 65,535 minutit {\displaystyle 256A + B}
4E 78 2 Aega, sest veakoodid tühjendatud
4F 79 4 Kütuse-õhu suhe samaväärsuse maksimumväärtus, hapniku anduri pinge, Hapnikuandur praeguse, ja sisselasketorustiku absoluutne surve 0, 0, 0, 0 255, 255, 255, 2550 suhe, V, mA, kPa A, B, C, D * 10
50 80 4 Õhu voolukiirus mass air flow sensor maksimumväärtus 0 2550 g/s A * 10, B, C, ja D on reserveeritud kasutamiseks tulevikus
51 81 1 Kütuse liik Kütuse tüüp tabelist vt allpool
52 82 1 Etanooli kütuse % 0 100 % {\displaystyle {\tfrac {100}{255}}A}
53 83 2 Absoluutne Evap süsteemi küllastunud auru rõhk 0 327.675 kPa {\displaystyle {\jaoks {256A + B}{200}}}
54 84 2 Evap süsteemi küllastunud auru rõhk -32,767 32,768 PA ((A * 256)+B)-32767
55 85 2 Lühiajaline teisese Hapnikuandur trimmi, A: Pank 1, B: Pank 3 -100 99.2 % {\displaystyle {\jaoks {100}{128}}A-100}{\displaystyle {\jaoks {100}{128}}B-100}
56 86 2 Kaua mõiste sekundaarne Hapnikuandur trimmi, A: Pank 1, B: Pank 3
57 87 2 Lühiajaline teisese Hapnikuandur trimmi, A: Pank 2, B: Pank 4
58 88 2 Kaua mõiste sekundaarne Hapnikuandur trimmi, A: Pank 2, B: Pank 4
59 89 2 Kütuse raudtee absoluutse rõhu 0 655,350 kPa {\displaystyle 10(256A + B)}
5A 90 1 Suhteline gaasi pedaali asend 0 100 % {\displaystyle {\tfrac {100}{255}}A}
5B 91 1 Hübriid aku järelejäänud eluea 0 100 % {\displaystyle {\tfrac {100}{255}}A}
5C 92 1 Mootoriõli temperatuur -40 210 ° C {\displaystyle A-40}
5D 93 2 Sissepritse ajastus -210.00 301.992 ° {\displaystyle {\jaoks {256A + B}{128}}-210}
5E 94 2 Mootori kütuse määr 0 3276.75 L/h {\displaystyle {\jaoks {256A + B}{20}}}
5F 95 1 Heitenõuded, kuhu sõiduk on konstrueeritud Kodeeritud bit
60 96 4 PID toetatud [61 – 80] Kodeeritud bit [A7. D0] == [PID $61.. PID $80] Vt allpool
61 97 1 Juhi nõudluse mootor – pöördemomendi -125 125 % 125
62 98 1 Tegelik mootori – pöördemomendi -125 125 % 125
63 99 2 Viide Max pöördemoment 0 65,535 Nm {\displaystyle 256A + B}
64 100 5 Mootori pöördemomendi andmed -125 125 % 125 jõude
B-125 mootori punkti 1
C-125 mootori punkti 2
D-125 mootori punkti 3
E-125 mootori punkti 4
65 101 2 Aux sisendi / toetatud väljund Kodeeritud bit
66 102 5 Mass air flow sensor
67 103 3 Mootori jahutusvedeliku temperatuur
68 104 7 Sisselaskeõhu temperatuuri andur
69 105 7 Käskis EGR ja EGR viga
6A 106 5 Commanded Diesel intake air flow control and relative intake air flow position
6B 107 5 Exhaust gas recirculation temperature
6C 108 5 Commanded throttle actuator control and relative throttle position
6D 109 6 Fuel pressure control system
6E 110 5 Injection pressure control system
6F 111 3 Turbocharger compressor inlet pressure
70 112 9 Boost pressure control
71 113 5 Variable Geometry turbo (VGT) control
72 114 5 Wastegate control
73 115 5 Exhaust pressure
74 116 5 Turbocharger RPM
75 117 7 Turbocharger temperature
76 118 7 Turbocharger temperature
77 119 5 Charge air cooler temperature (CACT)
78 120 9 Exhaust Gas temperature (EGT) Pank 1 Special PID. Vt allpool
79 121 9 Exhaust Gas temperature (EGT) Pank 2 Special PID. Vt allpool
7A 122 7 Diesel particulate filter (DPF)
7B 123 7 Diesel particulate filter (DPF)
7C 124 9 Diesel Particulate filter (DPF) temperature
7D 125 1 NOx NTE (Not-To-Exceed) control area status
7E 126 1 PM NTE (Not-To-Exceed) control area status
7F 127 13 Engine run time
80 128 4 PID toetatud [81 – A0] Kodeeritud bit [A7. D0] == [PID $81..PID $A0] Vt allpool
81 129 21 Engine run time for Auxiliary Emissions Control Device(AECD)
82 130 21 Engine run time for Auxiliary Emissions Control Device(AECD)
83 131 5 NOx sensor
84 132 Manifold surface temperature
85 133 NOx reagent system
86 134 Particulate matter (PM) sensor
87 135 Sisselasketorustiku absoluutne surve
A0 160 4 PID toetatud [A1 – C0] Kodeeritud bit [A7. D0] == [PID $A1..PID $C0] Vt allpool
C0 192 4 PID toetatud [C1 – E0] Kodeeritud bit [A7. D0] == [PID $C1..PID $E0] Vt allpool
C3 195 ? ? ? ? ? Returns numerous data, including Drive Condition ID and Engine Speed*
C4 196 ? ? ? ? ? B5 is Engine Idle Request
B6 is Engine Stop Request*
PID
(Hex)
PID
(Dets)
Tagastatud baiti andmeid Kirjeldus Min väärtus Max väärtus Üksused Valem[a]

Režiim 02[edit]

Režiim 02 accepts the same PIDs as mode 01, with the same meaning, but information given is from when the freeze frame was created.

You have to send the frame number in the data section of the message.

PID
(Hex)
Tagastatud baiti andmeid Kirjeldus Min väärtus Max väärtus Üksused Valem[a]
02 2 DTC that caused freeze frame to be stored. BCD encoded. Decoded as in mode 3

Režiim 03

PID
(Hex)
Tagastatud baiti andmeid Kirjeldus Min väärtus Max väärtus Üksused Valem[a]
N/A n*6 Request trouble codes 3 codes per message frame. Vt allpool

Režiim 04[edit]

PID
(Hex)
Tagastatud baiti andmeid Kirjeldus Min väärtus Max väärtus Üksused Valem[a]
N/A 0 Clear trouble codes / Malfunction indicator lamp (MIL) / Check engine light Clears all stored trouble codes and turns the MIL off.

Režiim 05

PID
(Hex)
Tagastatud baiti andmeid Kirjeldus Min väärtus Max väärtus Üksused Valem[a]
0100 OBD Monitor IDs supported ($01 $20)
0101 O2 Sensor Monitor Bank 1 Andur 1 0.00 1.275 volts 0.005 Rich to lean sensor threshold voltage
0102 O2 Sensor Monitor Bank 1 Andur 2 0.00 1.275 volts 0.005 Rich to lean sensor threshold voltage
0103 O2 Sensor Monitor Bank 1 Andur 3 0.00 1.275 volts 0.005 Rich to lean sensor threshold voltage
0104 O2 Sensor Monitor Bank 1 Andur 4 0.00 1.275 volts 0.005 Rich to lean sensor threshold voltage
0105 O2 Sensor Monitor Bank 2 Andur 1 0.00 1.275 volts 0.005 Rich to lean sensor threshold voltage
0106 O2 Sensor Monitor Bank 2 Andur 2 0.00 1.275 volts 0.005 Rich to lean sensor threshold voltage
0107 O2 Sensor Monitor Bank 2 Andur 3 0.00 1.275 volts 0.005 Rich to lean sensor threshold voltage
0108 O2 Sensor Monitor Bank 2 Andur 4 0.00 1.275 volts 0.005 Rich to lean sensor threshold voltage
0109 O2 Sensor Monitor Bank 3 Andur 1 0.00 1.275 volts 0.005 Rich to lean sensor threshold voltage
010A O2 Sensor Monitor Bank 3 Andur 2 0.00 1.275 volts 0.005 Rich to lean sensor threshold voltage
010B O2 Sensor Monitor Bank 3 Andur 3 0.00 1.275 volts 0.005 Rich to lean sensor threshold voltage
010C O2 Sensor Monitor Bank 3 Andur 4 0.00 1.275 volts 0.005 Rich to lean sensor threshold voltage
010D O2 Sensor Monitor Bank 4 Andur 1 0.00 1.275 volts 0.005 Rich to lean sensor threshold voltage
010E O2 Sensor Monitor Bank 4 Andur 2 0.00 1.275 volts 0.005 Rich to lean sensor threshold voltage
010F O2 Sensor Monitor Bank 4 Andur 3 0.00 1.275 volts 0.005 Rich to lean sensor threshold voltage
0110 O2 Sensor Monitor Bank 4 Andur 4 0.00 1.275 volts 0.005 Rich to lean sensor threshold voltage
0201 O2 Sensor Monitor Bank 1 Andur 1 0.00 1.275 volts 0.005 Lean to Rich sensor threshold voltage
0202 O2 Sensor Monitor Bank 1 Andur 2 0.00 1.275 volts 0.005 Lean to Rich sensor threshold voltage
0203 O2 Sensor Monitor Bank 1 Andur 3 0.00 1.275 volts 0.005 Lean to Rich sensor threshold voltage
0204 O2 Sensor Monitor Bank 1 Andur 4 0.00 1.275 volts 0.005 Lean to Rich sensor threshold voltage
0205 O2 Sensor Monitor Bank 2 Andur 1 0.00 1.275 volts 0.005 Lean to Rich sensor threshold voltage
0206 O2 Sensor Monitor Bank 2 Andur 2 0.00 1.275 volts 0.005 Lean to Rich sensor threshold voltage
0207 O2 Sensor Monitor Bank 2 Andur 3 0.00 1.275 volts 0.005 Lean to Rich sensor threshold voltage
0208 O2 Sensor Monitor Bank 2 Andur 4 0.00 1.275 volts 0.005 Lean to Rich sensor threshold voltage
0209 O2 Sensor Monitor Bank 3 Andur 1 0.00 1.275 volts 0.005 Lean to Rich sensor threshold voltage
020A O2 Sensor Monitor Bank 3 Andur 2 0.00 1.275 volts 0.005 Lean to Rich sensor threshold voltage
020B O2 Sensor Monitor Bank 3 Andur 3 0.00 1.275 volts 0.005 Lean to Rich sensor threshold voltage
020C O2 Sensor Monitor Bank 3 Andur 4 0.00 1.275 volts 0.005 Lean to Rich sensor threshold voltage
020D O2 Sensor Monitor Bank 4 Andur 1 0.00 1.275 volts 0.005 Lean to Rich sensor threshold voltage
020E O2 Sensor Monitor Bank 4 Andur 2 0.00 1.275 volts 0.005 Lean to Rich sensor threshold voltage
020F O2 Sensor Monitor Bank 4 Andur 3 0.00 1.275 volts 0.005 Lean to Rich sensor threshold voltage
0210 O2 Sensor Monitor Bank 4 Andur 4 0.00 1.275 volts 0.005 Lean to Rich sensor threshold voltage
PID
(Hex)
Tagastatud baiti andmeid Kirjeldus Min väärtus Max väärtus Üksused Valem[a]

Režiim 09

PID
(Hex)
Tagastatud baiti andmeid Kirjeldus Min väärtus Max väärtus Üksused Valem[a]
00 4 Režiim 9 supported PIDs (01 et 20) Kodeeritud bit. [A7. D0] = [PID $01.. PID $20] Vt allpool
01 1 VIN Message Count in PID 02. Only for ISO 9141-2, ISO 14230-4 and SAE J1850. Usually value will be 5.
02 17 Vehicle Identification Number (VIN) 17-char VIN, ASCII-encoded and left-padded with null chars (0x00) if needed to.
03 1 Calibration ID message count for PID 04. Only for ISO 9141-2, ISO 14230-4 and SAE J1850. It will be a multiple of 4 (4 messages are needed for each ID).
04 16,32,48,64.. Calibration ID Kuni 16 ASCII chars. Data bytes not used will be reported as null bytes (0x00). Several CALID can be outputed (16 bytes each)
05 1 Calibration verification numbers (CVN) message count for PID 06. Only for ISO 9141-2, ISO 14230-4 and SAE J1850.
06 4,8,12,16 Calibration Verification Numbers (CVN) Several CVN can be outputed (4 bytes each) the number of CVN and CALID must match Raw data left-padded with null characters (0x00). Usually displayed as hex string.
07 1 In-use performance tracking message count for PID 08 ja 0B. Only for ISO 9141-2, ISO 14230-4 and SAE J1850. 8 10 8 if sixteen (16) values are required to be reported, 9 if eighteen (18) values are required to be reported, ja 10 if twenty (20) values are required to be reported (one message reports two values, each one consisting in two bytes).
08 4 In-use performance tracking for spark ignition vehicles 4 või 5 messages, each one containing 4 bytes (two values). Vt allpool
09 1 ECU name message count for PID 0A
0A 20 ECU name ASCII-coded. Right-padded with null chars (0x00).
0B 4 In-use performance tracking for compression ignition vehicles 5 messages, each one containing 4 bytes (two values). Vt allpool
PID
(Hex)
Tagastatud baiti andmeid Kirjeldus Min väärtus Max väärtus Üksused Valem[a]
  1. ^ Jump up to:a b c d e f g h el In the formula column, letters A, B, C, jne. represent the decimal equivalent of the first, second, third, jne. bytes of data. Where a (?) appears, contradictory or incomplete information was available.

Bitwise encoded PIDs

Some of the PIDs in the above table cannot be explained with a simple formula. A more elaborate explanation of these data is provided here:

Režiim 1 PID 00

A request for this PID returns 4 bytes of data. Each bit, from MSB et LSB, represents one of the next 32 PIDs and is giving information about if it is supported.

For example, if the car response is BE1FA813, it can be decoded like this:

Hexadecimal B E 1 F A 8 1 3
Binary 1 0 1 1 1 1 1 0 0 0 0 1 1 1 1 1 1 0 1 0 1 0 0 0 0 0 0 1 0 0 1 1
Toetatud? Jah No Jah Jah Jah Jah Jah No No No No Jah Jah Jah Jah Jah Jah No Jah No Jah No No No No No No Jah No No Jah Jah
PID number 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F 10 11 12 13 14 15 16 17 18 19 1A 1B 1C 1D 1E 1F 20

So, supported PIDs are: 01, 03, 04, 05, 06, 07, 0C, 0D, 0E, 0F, 10, 11, 13, 15, 1C, 1F ja 20

Režiim 1 PID 01

A request for this PID returns 4 bytes of data, labeled A B C and D.

The first byte(A) contains two pieces of information. Bit A7 (MSB of byte A, the first byte) indicates whether or not the MIL (check engine light) is illuminated. Bits A6 through A0represent the number of diagnostic trouble codes currently flagged in the ECU.

The second, third, and fourth bytes(B, C and D) give information about the availability and completeness of certain on-board tests. Note that test availability is indicated by set (1) bit and completeness is indicated by reset (0) bit.

Bit Nimi Definition
A7 MIL Off or On, indicates if the CEL/MIL is on (or should be on)
A6A0 DTC_CNT Number of confirmed emissions-related DTCs available for display.
B7 RESERVED Reserved (should be 0)
B3 NO NAME 0 = Spark ignition monitors supported (nt. Otto or Wankel engines)
1 = Compression ignition monitors supported (nt. Diesel engines)

Here are the common bit B definitions, they are test based.

Test available Test incomplete
Components B2 B6
Fuel System B1 B5
Misfire B0 B4

The third and fourth bytes are to be interpreted differently depending on if the engine is spark Süüde (nt. Otto or Wankel engines) või compression ignition (nt. Diesel engines). In the second (B) byte, bit 3 indicates how to interpret the C and D bytes, koos 0 being spark (Otto or Wankel) ja 1 (set) being compression (Diesel).

The bytes C and D for spark ignition monitors (nt. Otto or Wankel engines):

Test available Test incomplete
EGR System C7 D7
Oxygen Sensor Heater C6 D6
Hapniku Sensor C5 D5
A/C Refrigerant C4 D4
Secondary Air System C3 D3
Evaporative System C2 D2
Heated Catalyst C1 D1
Catalyst C0 D0

And the bytes C and D for compression ignition monitors (Diesel engines):

Test available Test incomplete
EGR and/or VVT System C7 D7
PM filter monitoring C6 D6
Exhaust Gas Sensor C5 D5
Reserved C4 D4
Boost Pressure C3 D3
Reserved C2 D2
NOx/SCR Monitor C1 D1
NMHC Catalyst[a] C0 D0
  1. Jump up^ NMHC may stand for Non-Methane HydroCarbons, but J1979 does not enlighten us. The translation would be the ammonia sensor in the SCR catalyst.

Režiim 1 PID 41

A request for this PID returns 4 bytes of data. The first byte is always zero. The second, third, and fourth bytes give information about the availability and completeness of certain on-board tests. As with PID 01, the third and fourth bytes are to be interpreted differently depending on the ignition type (B3) – with 0 being spark and 1 (set) being compression. Note again that test availability is represented by a set (1) bit and completeness is represented by a reset (0) bit.

Here are the common bit B definitions, they are test based.

Test available Test incomplete
Components B2 B6
Fuel System B1 B5
Misfire B0 B4

The bytes C and D for spark ignition monitors (nt. Otto or Wankel engines):

Test available Test incomplete
EGR System C7 D7
Oxygen Sensor Heater C6 D6
Hapniku Sensor C5 D5
A/C Refrigerant C4 D4
Secondary Air System C3 D3
Evaporative System C2 D2
Heated Catalyst C1 D1
Catalyst C0 D0

And the bytes C and D for compression ignition monitors (Diesel engines):

Test available Test incomplete
EGR and/or VVT System C7 D7
PM filter monitoring C6 D6
Exhaust Gas Sensor C5 D5
Reserved C4 D4
Boost Pressure C3 D3
Reserved C2 D2
NOx/SCR Monitor C1 D1
NMHC Catalyst[a] C0 D0
  1. Jump up^ NMHC may stand for Non-Methane HydroCarbons, but J1979 does not enlighten us. The translation would be the ammonia sensor in the SCR catalyst.

Režiim 1 PID 78

A request for this PID will return 9 bytes of data. The first byte is a bit encoded field indicating which EGT sensors are supported:

Byte Kirjeldus
A Supported EGT sensors
BC Temperature read by EGT11
DE Temperature read by EGT12
FG Temperature read by EGT13
HMa Temperature read by EGT14

The first byte is bit-encoded as follows:

Bit Kirjeldus
A7A4 Reserved
A3 EGT bank 1, sensor 4 Toetatud?
A2 EGT bank 1, sensor 3 Toetatud?
A1 EGT bank 1, sensor 2 Toetatud?
A0 EGT bank 1, sensor 1 Toetatud?

The remaining bytes are 16 bit integers indicating the temperature in degrees Celsius in the range -40 et 6513.5 (scale 0.1), using the usual {\displaystyle (A\times 256+B)/10-40} formula (MSB is A, LSB is B). Only values for which the corresponding sensor is supported are meaningful.

The same structure applies to PID 79, but values are for sensors of bank 2.

Režiim 3 (no PID required)

A request for this mode returns a list of the DTCs that have been set. The list is encapsulated using the ISO 15765-2 protocol.

If there are two or fewer DTCs (4 bytes) they are returned in an ISO-TP Single Frame (SF). Three or more DTCs in the list are reported in multiple frames, with the exact count of frames dependent on the communication type and addressing details.

Each trouble code requires 2 bytes to describe. The text description of a trouble code may be decoded as follows. The first character in the trouble code is determined by the first two bits in the first byte:

A7A6 First DTC character
00 PPowertrain
01 CChassis
10 BBody
11 UNetwork

The two following digits are encoded as 2 bitti. The second character in the DTC is a number defined by the following table:

A5A4 Second DTC character
00 0
01 1
10 2
11 3

The third character in the DTC is a number defined by

A3A0 Third DTC character
0000 0
0001 1
0010 2
0011 3
0100 4
0101 5
0110 6
0111 7
1000 8
1001 9
1010 A
1011 B
1100 C
1101 D
1110 E
1111 F

The fourth and fifth characters are defined in the same way as the third, but using bits B7B4 ja B3B0. The resulting five-character code should look something likeU0158and can be looked up in a table of OBD-II DTCs. Hexadecimal characters (0-9, A-F), while relatively rare, are allowed in the last 3 positions of the code itself.

Režiim 9 PID 08

It provides information about track in-use performance for catalyst banks, oxygen sensor banks, evaporative leak detection systems, EGR systems and secondary air system.

The numerator for each component or system tracks the number of times that all conditions necessary for a specific monitor to detect a malfunction have been encountered. The denominator for each component or system tracks the number of times that the vehicle has been operated in the specified conditions.

The count of data items should be reported at the beginning (the first byte).

All data items of the In-use Performance Tracking record consist of two (2) bytes and are reported in this order (each message contains two items, hence the message length is 4).

Mnemonic Kirjeldus
OBDCOND OBD Monitoring Conditions Encountered Counts
IGNCNTR Ignition Counter
CATCOMP1 Catalyst Monitor Completion Counts Bank 1
CATCOND1 Catalyst Monitor Conditions Encountered Counts Bank 1
CATCOMP2 Catalyst Monitor Completion Counts Bank 2
CATCOND2 Catalyst Monitor Conditions Encountered Counts Bank 2
O2SCOMP1 O2 Sensor Monitor Completion Counts Bank 1
O2SCOND1 O2 Sensor Monitor Conditions Encountered Counts Bank 1
O2SCOMP2 O2 Sensor Monitor Completion Counts Bank 2
O2SCOND2 O2 Sensor Monitor Conditions Encountered Counts Bank 2
EGRCOMP EGR Monitor Completion Condition Counts
EGRCOND EGR Monitor Conditions Encountered Counts
AIRCOMP AIR Monitor Completion Condition Counts (Secondary Air)
AIRCOND AIR Monitor Conditions Encountered Counts (Secondary Air)
EVAPCOMP EVAP Monitor Completion Condition Counts
EVAPCOND EVAP Monitor Conditions Encountered Counts
SO2SCOMP1 Secondary O2 Sensor Monitor Completion Counts Bank 1
SO2SCOND1 Secondary O2 Sensor Monitor Conditions Encountered Counts Bank 1
SO2SCOMP2 Secondary O2 Sensor Monitor Completion Counts Bank 2
SO2SCOND2 Secondary O2 Sensor Monitor Conditions Encountered Counts Bank 2

Režiim 9 PID 0B

It provides information about track in-use performance for NMHC catalyst, NOx catalyst monitor, NOx adsorber monitor, PM filter monitor, exhaust gas sensor monitor, EGR/ VVT monitor, boost pressure monitor and fuel system monitor.

All data items consist of two (2) bytes and are reported in this order (each message contains two items, hence message length is 4):

Mnemonic Kirjeldus
OBDCOND OBD Monitoring Conditions Encountered Counts
IGNCNTR Ignition Counter
HCCATCOMP NMHC Catalyst Monitor Completion Condition Counts
HCCATCOND NMHC Catalyst Monitor Conditions Encountered Counts
NCATCOMP NOx/SCR Catalyst Monitor Completion Condition Counts
NCATCOND NOx/SCR Catalyst Monitor Conditions Encountered Counts
NADSCOMP NOx Adsorber Monitor Completion Condition Counts
NADSCOND NOx Adsorber Monitor Conditions Encountered Counts
PMCOMP PM Filter Monitor Completion Condition Counts
PMCOND PM Filter Monitor Conditions Encountered Counts
EGSCOMP Exhaust Gas Sensor Monitor Completion Condition Counts
EGSCOND Exhaust Gas Sensor Monitor Conditions Encountered Counts
EGRCOMP EGR and/or VVT Monitor Completion Condition Counts
EGRCOND EGR and/or VVT Monitor Conditions Encountered Counts
BPCOMP Boost Pressure Monitor Completion Condition Counts
BPCOND Boost Pressure Monitor Conditions Encountered Counts
FUELCOMP Fuel Monitor Completion Condition Counts
FUELCOND Fuel Monitor Conditions Encountered Counts

Enumerated PIDs[edit]

Some PIDs are to be interpreted specially, and aren’t necessarily exactly bitwise encoded, or in any scale. The values for these PIDs are enumerated.

Režiim 1 PID 03[edit]

A request for this PID returns 2 bytes of data. The first byte describes fuel system #1.

Value Kirjeldus
1 Open loop due to insufficient engine temperature
2 Closed loop, using oxygen sensor feedback to determine fuel mix
4 Open loop due to engine load OR fuel cut due to deceleration
8 Open loop due to system failure
16 Closed loop, using at least one oxygen sensor but there is a fault in the feedback system

Any other value is an invalid response. There can only be one bit set at most.

The second byte describes fuel system #2 (if it exists) and is encoded identically to the first byte.

Režiim 1 PID 12

A request for this PID returns a single byte of data which describes the secondary air status.

Value Kirjeldus
1 Upstream
2 Downstream of catalytic converter
4 From the outside atmosphere or off
8 Pump commanded on for diagnostics

Any other value is an invalid response. There can only be one bit set at most.

Režiim 1 PID 1C

A request for this PID returns a single byte of data which describes which OBD standards this ECU was designed to comply with. The different values the data byte can hold are shown below, next to what they mean:

Value Kirjeldus
1 OBD-II as defined by the CARB
2 OBD as defined by the EPA
3 OBD and OBD-II
4 OBD-I
5 Not OBD compliant
6 EOBD (Europe)
7 EOBD and OBD-II
8 EOBD and OBD
9 EOBD, OBD and OBD II
10 JOBD (Jaapan)
11 JOBD and OBD II
12 JOBD and EOBD
13 JOBD, EOBD, and OBD II
14 Reserved
15 Reserved
16 Reserved
17 Engine Manufacturer Diagnostics (EMD)
18 Engine Manufacturer Diagnostics Enhanced (EMD+)
19 Heavy Duty On-Board Diagnostics (Child/Partial) (HD OBD-C)
20 Heavy Duty On-Board Diagnostics (HD OBD)
21 World Wide Harmonized OBD (WWH OBD)
22 Reserved
23 Heavy Duty Euro OBD Stage I without NOx control (HD EOBD-I)
24 Heavy Duty Euro OBD Stage I with NOx control (HD EOBD-I N)
25 Heavy Duty Euro OBD Stage II without NOx control (HD EOBD-II)
26 Heavy Duty Euro OBD Stage II with NOx control (HD EOBD-II N)
27 Reserved
28 Brazil OBD Phase 1 (OBDBr-1)
29 Brazil OBD Phase 2 (OBDBr-2)
30 Korean OBD (KOBD)
31 India OBD I (IOBD I)
32 India OBD II (IOBD II)
33 Heavy Duty Euro OBD Stage VI (HD EOBD-IV)
34-250 Reserved
251-255 Not available for assignment (SAE J1939 special meaning)

Fuel Type Coding

Režiim 1 PID 51 returns a value from an enumerated list giving the fuel type of the vehicle. The fuel type is returned as a single byte, and the value is given by the following table:

Value Kirjeldus
0 Not available
1 Gasoline
2 Methanol
3 Ethanol
4 Diesel
5 LPG
6 CNG
7 Propane
8 Electric
9 Bifuel running Gasoline
10 Bifuel running Methanol
11 Bifuel running Ethanol
12 Bifuel running LPG
13 Bifuel running CNG
14 Bifuel running Propane
15 Bifuel running Electricity
16 Bifuel running electric and combustion engine
17 Hybrid gasoline
18 Hybrid Ethanol
19 Hybrid Diesel
20 Hybrid Electric
21 Hybrid running electric and combustion engine
22 Hybrid Regenerative
23 Bifuel running diesel

Any other value is reserved by ISO/SAE. There are currently no definitions for flexible-fuel vehicle.

Non-standard PIDs

The majority of all OBD-II PIDs in use are non-standard. For most modern vehicles, there are many more functions supported on the OBD-II interface than are covered by the standard PIDs, and there is relatively minor overlap between vehicle manufacturers for these non-standard PIDs.

There is very limited information available in the public domain for non-standard PIDs. The primary source of information on non-standard PIDs across different manufacturers is maintained by the US-based Equipment and Tool Institute and only available to members. The price of ETI membership for access to scan codes varies based on company size defined by annual sales of automotive tools and equipment in North America:

Annual Sales in North America Annual Dues
Under $10,000,000 $5,000
$10,000,000 – $50,000,000 $7,500
Greater than $50,000,000 $10,000

However, even ETI membership will not provide full documentation for non-standard PIDs. ETI state:[4][5]

Some OEMs refuse to use ETI as a one-stop source of scan tool information. They prefer to do business with each tool company separately. These companies also require that you enter into a contract with them. The charges vary but here is a snapshot as of April 13th, 2015 of the per year charges:

GM $50,000
Honda $5,000
Suzuki $1,000
BMW $25,500 Plus $2,000 per update. Updates occur annually.

SAATE (11-bit) bus format

The PID query and response occurs on the vehicle’s CAN bus. Standard OBD requests and responses use functional addresses. The diagnostic reader initiates a query using CAN ID 7DFh[clarification needed], which acts as a broadcast address, and accepts responses from any ID in the range 7E8h to 7EFh. ECUs that can respond to OBD queries listen both to the functional broadcast ID of 7DFh and one assigned ID in the range 7E0h to 7E7h. Their response has an ID of their assigned ID plus 8 nt. 7E8h through 7EFh.

This approach allows up to eight ECUs, each independently responding to OBD queries. The diagnostic reader can use the ID in the ECU response frame to continue communication with a specific ECU. In particular, multi-frame communication requires a response to the specific ECU ID rather than to ID 7DFh.

CAN bus may also be used for communication beyond the standard OBD messages. Physical addressing uses particular CAN IDs for specific modules (nt, 720h for the instrument cluster in Fords) with proprietary frame payloads.

Query

The functional PID query is sent to the vehicle on the CAN bus at ID 7DFh, using 8 data bytes. The bytes are:

Byte
PID Type 0 1 2 3 4 5 6 7
SAE Standard Number of
additional
data bytes:
2
Režiim
01 = show current data;
02 = freeze frame;
jne.
PID code
(nt: 05 = Engine coolant temperature)
kasutamata
(may be 55h)
Vehicle specific Number of
additional
data bytes:
3
Custom mode: (nt: 22 = enhanced data) PID code
(nt: 4980h)
kasutamata
(may be 00h or 55h)

Response

The vehicle responds to the PID query on the CAN bus with message IDs that depend on which module responded. Typically the engine or main ECU responds at ID 7E8h. Other modules, like the hybrid controller or battery controller in a Prius, respond at 07E9h, 07EAh, 07EBh, jne. These are 8h higher than the physical address the module responds to. Even though the number of bytes in the returned value is variable, the message uses 8 data bytes regardless (CAN bus protocol form Frameformat with 8 data bytes). The bytes are:

Byte
PID Type 0 1 2 3 4 5 6 7
SAE Standard
7E8h,
7E9h,
7EAh,
jne.
Number of
additional
data bytes:
3 et 6
Custom mode
Same as query, except that 40h is added to the mode value. So:
41h = show current data;
42h = freeze frame;
jne.
PID code
(nt: 05 = Engine coolant temperature)
value of the specified parameter, byte 0 value, byte 1 (vabatahtlik) value, byte 2 (vabatahtlik) value, byte 3 (vabatahtlik) kasutamata
(may be 00h or 55h)
Vehicle specific
7E8h, or 8h + physical ID of module.
Number of
additional
data bytes:
4et 7
Custom mode: same as query, except that 40h is added to the mode value.(nt: 62h = response to mode 22h request) PID code
(nt: 4980h)
value of the specified parameter, byte 0 value, byte 1 (vabatahtlik) value, byte 2 (vabatahtlik) value, byte 3 (vabatahtlik)
Vehicle specific
7E8h, or 8h + physical ID of module.
Number of
additional
data bytes:
3
7Fh this a general response usually indicating the module doesn’t recognize the request. Custom mode: (nt: 22h = enhanced diagnostic data by PID, 21h = enhanced data by offset) 31h kasutamata
(may be 00h)

Benz 14pin – 16PIN-kood

Nissian 14 PIN-kood – 16PIN-kood

GM12 PIN-16PIN

DB9-16 PIN

iveco 38pin -16 PIN-kood

Fiat 3 PIN-kood – 16 PIN-kood

Toyato 22pin – 16 PIN-kood

KIA 20 PIN-kood – 16 PIN-kood

Audi 2×2 – 16 PIN-kood

Benz 38 PIN-kood

Mitsubishi 12 PIN-kood – 16PIN-kood

Honda 3pin – 16PIN-kood

BMW 20 PIN-KOOD – 3 PIN-kood

Subaru 9 PIN-kood – 16 PIN-kood

Chrysler 6 PIN-kood