ODB2 Pinout kodai visi

OBD2 Pabaiga atidaryta & išplėsti kabelio kaiščio priskyrimą ,prašome paspausti čia

Standartinis OBD2 pinout

Rūgštusis:Wiki

Režimai

Yra 10 veikimo būdai, aprašyti naujausiame OBD-II standarte SAE J1979. Jie yra tokie::

Režimu (Hex) Aprašymas
01 Rodyti dabartinius duomenis
02 Rodyti fiksavimo rėmelio duomenis
03 Rodyti saugomus diagnostikos problemų kodus
04 Išvalyti diagnostikos trikčių kodus ir saugomas reikšmes
05 Bandymo rezultatai, deguonies jutiklio stebėjimas (tik ne CAN)
06 Bandymo rezultatai, kitos sudedamosios dalies ir (arba) sistemos stebėjimas (Bandymo rezultatai, deguonies jutiklio stebėjimas tik CAN)
07 Rodyti laukiančius diagnostikos problemų kodus (aptinkamas per dabartinį arba paskutinį važiavimo ciklą)
08 Riedmens komponento ir (arba) sistemos valdymo veikimas
09 Prašyti transporto priemonės informacijos
0A Nuolatinis Diagnostiniai problemų kodai (Dtcs) (Išvalyti DTCs)

Transporto priemonių gamintojai neprivalo palaikyti visų režimų. Kiekvienas gamintojas gali nustatyti papildomus režimus, #9 (pvz.: Režimu 22 kaip apibrėžta SAE J2190 Ford/GM, Režimu 21 dėl Toyota) kitai informacijai, pvz.,. traukos baterijos įtampą hibridinė elektra varoma transporto priemonė (Hev (Hev)).[2]

Standartiniai PID

Toliau pateiktoje lentelėje nurodyti standartiniai BDS II PPĮ, kaip apibrėžta SAE J1979. Laukiamas atsakas į kiekvieną PID pateikiamas, informacija apie tai, kaip atsakymą paversti prasmingais duomenimis. Vėl, ne visos transporto priemonės palaikys visus BĮD ir gali būti gamintojo nustatytų pasirinktinių PID, kurie nėra apibrėžti BDS II standarte.

Turìkite u3/4ra¹yti 1 ir 2 iš esmės yra identiškos, išskyrus tą režimą 1 teikia naujausią informaciją, kadangi režimas 2 pateikiama tų pačių duomenų, kurių buvo imtasi tuo metu, kai buvo nustatytas paskutinis diagnostikos trikties kodas, momentinė kopija. Išimtys yra PID 01, , kuri galima tik režimu 1, ir PID 02, , kuri galima tik režimu 2. Jei režimas 2 Pid 02 grąžina nulį, tada nėra momentinės kopijos ir visų kitų režimų 2 duomenys yra beprasmiai.

Naudojant bitų koduotą notaciją, kiekiai, pavyzdžiui, C4 reiškia bitų 4 iš duomenų baitų C. Kiekvienas bitas yra 0 į 7, Taigi 7 yra svarbiausias bitų ir 0 yra mažiausiai reikšmingas bitų.

A B C D
A7 A7 (Os) A6 A5 (1809) A4 A3 A3 (199 A2 -- Viešbučiai A1 -- A0 (Netoli viešbučio) B7 (Netoli viešbučio b7 B6 (Netoli viešbučio) B5 (Netoli viešbučio) B4 (B4) B3 (Netoli viešbučio) B2 B1 (Netoli viešbučio) B0 (Netoli viešbučio b0 C7 (05 C6 (Netoli viešbučio) C5 (15 C4 (C4) C3 (3 C2 (2 03 C1 (C1) C0 (C0) D7 (D7) D6 (D6) D5 (D5) D4 (D4) D3 (D3) D2 (D2) D1 (D1) D0 (D0)

Režimu 01

Pid
(Hex)
Pid
(Gruodis)
Grąžinti duomenų baitai Aprašymas Min. reikšmė Maksimali vertė Vienetų Formulė[a]
00 0 4 PpD palaikomi [01 – 20] Šiek tiek užkoduotas [A7. D0 (D0)] == [PID $01..PID (01..PID) $20] Žr.
01 1 4 Stebėti būseną nuo DTCs išvalyti. (Apima gedimo indikatoriaus lempą (Mil) dtšt sumą ir skaičių.) Šiek tiek užkoduotas. Žr.
02 2 2 Užšaldyti DTK
03 3 2 Degalų sistemos būsena Šiek tiek užkoduotas. Žr.
04 4 1 Apskaičiuota variklio apkrova 0 100 % {\ekrano stilius {\tfrac (-us) {100}{255}}A} (arba {\ekrano stilius {\tfrac (-us) {A}{2.55}}})
05 5 1 Variklio aušalo temperatūra -40 215 ° C {\ekrano stilius A-40}
06 6 1 Trumpalaikis kuro apdaila-Bankas 1 -100 (Sumažinti degalų: Per daug turtingas) 99.2 (Pridėti kuro: Per liesos) %
{\ekrano stilius {\frac ( {100}{128}}A-100 (100)}

(arba {\ekrano stilius {\tfrac (-us) {A}{1.28}}-100} )

07 7 1 Ilgalaikis kuro apdaila - Bankas 1
08 8 1 Trumpalaikis kuro apdaila-Bankas 2
09 9 1 Ilgalaikis kuro apdaila - Bankas 2
0A 10 1 Degalų slėgis (matuoklio slėgis) 0 765 Kpa {\displaystyle 3A (Rodyti panašias apgyvendinimo įstaigas)}
0B 11 1 Įsiurbimo kolektoriaus absoliutusis slėgis 0 255 Kpa {\A ekrano stilius}
0C 12 2 Variklio aps./min. 0 16,383.75 Rpm {\ekrano stilius {\frac ( {256A+B (A+B)}{4}}}
0D 13 1 Transporto priemonės greitis 0 255 km/h {\A ekrano stilius}
0E 14 1 Laiko iš anksto -64 63.5 ° before TDC {\ekrano stilius {\frac ( {A}{2}}-64}
0F 15 1 Intake air temperature -40 215 ° C {\ekrano stilius A-40}
10 16 2 MAF air flow rate 0 655.35 grams/sec {\ekrano stilius {\frac ( {256A+B (A+B)}{100}}}
11 17 1 Throttle position 0 100 % {\ekrano stilius {\tfrac (-us) {100}{255}}A}
12 18 1 Commanded secondary air status Šiek tiek užkoduotas. Žr.
13 19 1 Oxygen sensors present (į 2 banks) [A0..A3] == Bank 1, Sensors 1-4. [A4..A7] == Bank 2
14 20 2 Oxygen Sensor 1
A: Įtampos
B: Short term fuel trim
0
-100
1.275
99.2
volts%
{\ekrano stilius {\frac ( {A}{200}}}

{\ekrano stilius {\frac ( {100}{128}}B-100}

(if B==$FF, sensor is not used in trim calculation)

15 21 2 Oxygen Sensor 2
A: Įtampos
B: Short term fuel trim
16 22 2 Oxygen Sensor 3
A: Įtampos
B: Short term fuel trim
17 23 2 Oxygen Sensor 4
A: Įtampos
B: Short term fuel trim
18 24 2 Oxygen Sensor 5
A: Įtampos
B: Short term fuel trim
19 25 2 Oxygen Sensor 6
A: Įtampos
B: Short term fuel trim
1A 26 2 Oxygen Sensor 7
A: Įtampos
B: Short term fuel trim
1B 27 2 Oxygen Sensor 8
A: Įtampos
B: Short term fuel trim
1C 28 1 OBD standards this vehicle conforms to Šiek tiek užkoduotas. Žr.
1D 29 1 Oxygen sensors present (į 4 banks) Similar to PID 13, but [A0..A7] == [B1S1, B1S2, B2S1, B2S2, B3S1, B3S2, B4S1, B4S2]
1E 30 1 Auxiliary input status A0 == Power Take Off (PTO) status (1 == active)
[A1..A7] not used
1F 31 2 Run time since engine start 0 65,535 seconds {\displaystyle 256A+B}
20 32 4 PpD palaikomi [21 – 40] Šiek tiek užkoduotas [A7. D0 (D0)] == [PID $21..PID $40] Žr.
21 33 2 Distance traveled with malfunction indicator lamp (Mil) dėl 0 65,535 km {\displaystyle 256A+B}
22 34 2 Fuel Rail Pressure (relative to manifold vacuum) 0 5177.265 Kpa {\ekrano stilius 0.079(256A+B (A+B))}
23 35 2 Fuel Rail Gauge Pressure (diesel, or gasoline direct injection) 0 655,350 Kpa {\ekrano stilius 10(256A+B (A+B))}
24 36 4 Oxygen Sensor 1
AB: Fuel–Air Equivalence Ratio
CD: Įtampos
0
0
< 2
< 8
ratio
V
{\ekrano stilius {\frac ( {2}{65536}}(256A+B (A+B))}

{\ekrano stilius {\frac ( {8}{65536}}(256C+D)}

25 37 4 Oxygen Sensor 2
AB: Fuel–Air Equivalence Ratio
CD: Įtampos
26 38 4 Oxygen Sensor 3
AB: Fuel–Air Equivalence Ratio
CD: Įtampos
27 39 4 Oxygen Sensor 4
AB: Fuel–Air Equivalence Ratio
CD: Įtampos
28 40 4 Oxygen Sensor 5
AB: Fuel–Air Equivalence Ratio
CD: Įtampos
29 41 4 Oxygen Sensor 6
AB: Fuel–Air Equivalence Ratio
CD: Įtampos
2A 42 4 Oxygen Sensor 7
AB: Fuel–Air Equivalence Ratio
CD: Įtampos
2B 43 4 Oxygen Sensor 8
AB: Fuel–Air Equivalence Ratio
CD: Įtampos
2C 44 1 Commanded EGR 0 100 % {\ekrano stilius {\tfrac (-us) {100}{255}}A}
2D 45 1 EGR Error -100 99.2 % {\ekrano stilius {\tfrac (-us) {100}{128}}A-100 (100)}
2E 46 1 Commanded evaporative purge 0 100 % {\ekrano stilius {\tfrac (-us) {100}{255}}A}
2F 47 1 Fuel Tank Level Input 0 100 % {\ekrano stilius {\tfrac (-us) {100}{255}}A}
30 48 1 Warm-ups since codes cleared 0 255 count {\A ekrano stilius}
31 49 2 Distance traveled since codes cleared 0 65,535 km {\displaystyle 256A+B}
32 50 2 Evap. System Vapor Pressure -8,192 8191.75 Pa {\ekrano stilius {\frac ( {256A+B (A+B)}{4}}}(AB is two’s complement signed)[3]
33 51 1 Absolute Barometric Pressure 0 255 Kpa {\A ekrano stilius}
34 52 4 Oxygen Sensor 1
AB: Fuel–Air Equivalence Ratio
CD: Srovė
0
-128
< 2
<128
ratio
mA
{\ekrano stilius {\frac ( {2}{65536}}(256A+B (A+B))}

{\ekrano stilius {\frac ( {256C+D}{256}}-128}

arba {\displaystyle C+{\frac ( {D}{256}}-128}

35 53 4 Oxygen Sensor 2
AB: Fuel–Air Equivalence Ratio
CD: Srovė
36 54 4 Oxygen Sensor 3
AB: Fuel–Air Equivalence Ratio
CD: Srovė
37 55 4 Oxygen Sensor 4
AB: Fuel–Air Equivalence Ratio
CD: Srovė
38 56 4 Oxygen Sensor 5
AB: Fuel–Air Equivalence Ratio
CD: Srovė
39 57 4 Oxygen Sensor 6
AB: Fuel–Air Equivalence Ratio
CD: Srovė
3A 58 4 Oxygen Sensor 7
AB: Fuel–Air Equivalence Ratio
CD: Srovė
3B 59 4 Oxygen Sensor 8
AB: Fuel–Air Equivalence Ratio
CD: Srovė
3C 60 2 Catalyst Temperature: Bank 1, Sensor 1 -40 6,513.5 ° C {\ekrano stilius {\frac ( {256A+B (A+B)}{10}}-40}
3D 61 2 Catalyst Temperature: Bank 2, Sensor 1
3E 62 2 Catalyst Temperature: Bank 1, Sensor 2
3F 63 2 Catalyst Temperature: Bank 2, Sensor 2
40 64 4 PpD palaikomi [41 – 60] Šiek tiek užkoduotas [A7. D0 (D0)] == [PID $41..PID $60] Žr.
41 65 4 Monitor status this drive cycle Šiek tiek užkoduotas. Žr.
42 66 2 Control module voltage 0 65.535 V {\ekrano stilius {\frac ( {256A+B (A+B)}{1000}}}
43 67 2 Absolute load value 0 25,700 % {\ekrano stilius {\tfrac (-us) {100}{255}}(256A+B (A+B))}
44 68 2 Fuel–Air commanded equivalence ratio 0 < 2 ratio {\ekrano stilius {\tfrac (-us) {2}{65536}}(256A+B (A+B))}
45 69 1 Relative throttle position 0 100 % {\ekrano stilius {\tfrac (-us) {100}{255}}A}
46 70 1 Ambient air temperature -40 215 ° C {\ekrano stilius A-40}
47 71 1 Absolute throttle position B 0 100 % {\ekrano stilius {\frac ( {100}{255}}A}
48 72 1 Absolute throttle position C
49 73 1 Accelerator pedal position D
4A 74 1 Accelerator pedal position E
4B 75 1 Accelerator pedal position F
4C 76 1 Commanded throttle actuator
4D 77 2 Time run with MIL on 0 65,535 minutes {\displaystyle 256A+B}
4E 78 2 Time since trouble codes cleared
4F 79 4 Maximum value for Fuel–Air equivalence ratio, oxygen sensor voltage, oxygen sensor current, and intake manifold absolute pressure 0, 0, 0, 0 255, 255, 255, 2550 ratio, V, mA, Kpa A, B, C, D*10
50 80 4 Maximum value for air flow rate from mass air flow sensor 0 2550 g/s A*10, B, C, and D are reserved for future use
51 81 1 Fuel Type From fuel type table see below
52 82 1 Ethanol fuel % 0 100 % {\ekrano stilius {\tfrac (-us) {100}{255}}A}
53 83 2 Absolute Evap system Vapor Pressure 0 327.675 Kpa {\ekrano stilius {\frac ( {256A+B (A+B)}{200}}}
54 84 2 Evap system vapor pressure -32,767 32,768 Pa ((A*256)+B)-32767
55 85 2 Short term secondary oxygen sensor trim, A: bank 1, B: bank 3 -100 99.2 % {\ekrano stilius {\frac ( {100}{128}}A-100 (100)}{\ekrano stilius {\frac ( {100}{128}}B-100}
56 86 2 Long term secondary oxygen sensor trim, A: bank 1, B: bank 3
57 87 2 Short term secondary oxygen sensor trim, A: bank 2, B: bank 4
58 88 2 Long term secondary oxygen sensor trim, A: bank 2, B: bank 4
59 89 2 Fuel rail absolute pressure 0 655,350 Kpa {\ekrano stilius 10(256A+B (A+B))}
5A 90 1 Relative accelerator pedal position 0 100 % {\ekrano stilius {\tfrac (-us) {100}{255}}A}
5B 91 1 Hybrid battery pack remaining life 0 100 % {\ekrano stilius {\tfrac (-us) {100}{255}}A}
5C 92 1 Engine oil temperature -40 210 ° C {\ekrano stilius A-40}
5D 93 2 Fuel injection timing -210.00 301.992 ° {\ekrano stilius {\frac ( {256A+B (A+B)}{128}}-210}
5E 94 2 Engine fuel rate 0 3276.75 L/h {\ekrano stilius {\frac ( {256A+B (A+B)}{20}}}
5F 95 1 Emission requirements to which vehicle is designed Bit Encoded
60 96 4 PpD palaikomi [61 – 80] Šiek tiek užkoduotas [A7. D0 (D0)] == [PID $61..PID $80] Žr.
61 97 1 Driver’s demand enginepercent torque -125 125 % A-125
62 98 1 Actual enginepercent torque -125 125 % A-125
63 99 2 Engine reference torque 0 65,535 Nm {\displaystyle 256A+B}
64 100 5 Engine percent torque data -125 125 % A-125 Idle
B-125 Engine point 1
C-125 Engine point 2
D-125 Engine point 3
E-125 Engine point 4
65 101 2 Auxiliary input / output supported Bit Encoded
66 102 5 Mass air flow sensor
67 103 3 Variklio aušalo temperatūra
68 104 7 Intake air temperature sensor
69 105 7 Commanded EGR and EGR Error
6A 106 5 Commanded Diesel intake air flow control and relative intake air flow position
6B 107 5 Exhaust gas recirculation temperature
6C 108 5 Commanded throttle actuator control and relative throttle position
6D 109 6 Fuel pressure control system
6E 110 5 Injection pressure control system
6F 111 3 Turbocharger compressor inlet pressure
70 112 9 Boost pressure control
71 113 5 Variable Geometry turbo (VGT) control
72 114 5 Wastegate control
73 115 5 Exhaust pressure
74 116 5 Turbocharger RPM
75 117 7 Turbocharger temperature
76 118 7 Turbocharger temperature
77 119 5 Charge air cooler temperature (CACT)
78 120 9 Exhaust Gas temperature (EGT) Bank 1 Special PID. Žr.
79 121 9 Exhaust Gas temperature (EGT) Bank 2 Special PID. Žr.
7A 122 7 Diesel particulate filter (DPF)
7B 123 7 Diesel particulate filter (DPF)
7C 124 9 Diesel Particulate filter (DPF) temperature
7D 125 1 NOx NTE (Not-To-Exceed) control area status
7E 126 1 PM NTE (Not-To-Exceed) control area status
7F 127 13 Engine run time
80 128 4 PpD palaikomi [81 – A0 (Netoli viešbučio)] Šiek tiek užkoduotas [A7. D0 (D0)] == [PID $81..PID $A0] Žr.
81 129 21 Engine run time for Auxiliary Emissions Control Device(AECD)
82 130 21 Engine run time for Auxiliary Emissions Control Device(AECD)
83 131 5 NOx sensor
84 132 Manifold surface temperature
85 133 NOx reagent system
86 134 Particulate matter (PM) sensor
87 135 Įsiurbimo kolektoriaus absoliutusis slėgis
A0 (Netoli viešbučio) 160 4 PpD palaikomi [A1 -- – C0 (C0)] Šiek tiek užkoduotas [A7. D0 (D0)] == [PID $A1..PID $C0] Žr.
C0 (C0) 192 4 PpD palaikomi [C1 (C1) – E0] Šiek tiek užkoduotas [A7. D0 (D0)] == [PID $C1..PID $E0] Žr.
C3 (3 195 ? ? ? ? ? Returns numerous data, including Drive Condition ID and Engine Speed*
C4 (C4) 196 ? ? ? ? ? B5 is Engine Idle Request
B6 is Engine Stop Request*
Pid
(Hex)
Pid
(Gruodis)
Grąžinti duomenų baitai Aprašymas Min. reikšmė Maksimali vertė Vienetų Formulė[a]

Režimu 02[edit]

Režimu 02 accepts the same PIDs as mode 01, with the same meaning, but information given is from when the freeze frame was created.

You have to send the frame number in the data section of the message.

Pid
(Hex)
Grąžinti duomenų baitai Aprašymas Min. reikšmė Maksimali vertė Vienetų Formulė[a]
02 2 DTC that caused freeze frame to be stored. BCD encoded. Decoded as in mode 3

Režimu 03

Pid
(Hex)
Grąžinti duomenų baitai Aprašymas Min. reikšmė Maksimali vertė Vienetų Formulė[a]
N/A n*6 Request trouble codes 3 codes per message frame. Žr.

Režimu 04[edit]

Pid
(Hex)
Grąžinti duomenų baitai Aprašymas Min. reikšmė Maksimali vertė Vienetų Formulė[a]
N/A 0 Clear trouble codes / Malfunction indicator lamp (Mil) / Check engine light Clears all stored trouble codes and turns the MIL off.

Režimu 05

Pid
(Hex)
Grąžinti duomenų baitai Aprašymas Min. reikšmė Maksimali vertė Vienetų Formulė[a]
0100 OBD Monitor IDs supported ($01 $20)
0101 O2 Sensor Monitor Bank 1 Sensor 1 0.00 1.275 volts 0.005 Rich to lean sensor threshold voltage
0102 O2 Sensor Monitor Bank 1 Sensor 2 0.00 1.275 volts 0.005 Rich to lean sensor threshold voltage
0103 O2 Sensor Monitor Bank 1 Sensor 3 0.00 1.275 volts 0.005 Rich to lean sensor threshold voltage
0104 O2 Sensor Monitor Bank 1 Sensor 4 0.00 1.275 volts 0.005 Rich to lean sensor threshold voltage
0105 O2 Sensor Monitor Bank 2 Sensor 1 0.00 1.275 volts 0.005 Rich to lean sensor threshold voltage
0106 O2 Sensor Monitor Bank 2 Sensor 2 0.00 1.275 volts 0.005 Rich to lean sensor threshold voltage
0107 O2 Sensor Monitor Bank 2 Sensor 3 0.00 1.275 volts 0.005 Rich to lean sensor threshold voltage
0108 O2 Sensor Monitor Bank 2 Sensor 4 0.00 1.275 volts 0.005 Rich to lean sensor threshold voltage
0109 O2 Sensor Monitor Bank 3 Sensor 1 0.00 1.275 volts 0.005 Rich to lean sensor threshold voltage
010A O2 Sensor Monitor Bank 3 Sensor 2 0.00 1.275 volts 0.005 Rich to lean sensor threshold voltage
010B O2 Sensor Monitor Bank 3 Sensor 3 0.00 1.275 volts 0.005 Rich to lean sensor threshold voltage
010C O2 Sensor Monitor Bank 3 Sensor 4 0.00 1.275 volts 0.005 Rich to lean sensor threshold voltage
010D O2 Sensor Monitor Bank 4 Sensor 1 0.00 1.275 volts 0.005 Rich to lean sensor threshold voltage
010E O2 Sensor Monitor Bank 4 Sensor 2 0.00 1.275 volts 0.005 Rich to lean sensor threshold voltage
010F O2 Sensor Monitor Bank 4 Sensor 3 0.00 1.275 volts 0.005 Rich to lean sensor threshold voltage
0110 O2 Sensor Monitor Bank 4 Sensor 4 0.00 1.275 volts 0.005 Rich to lean sensor threshold voltage
0201 O2 Sensor Monitor Bank 1 Sensor 1 0.00 1.275 volts 0.005 Lean to Rich sensor threshold voltage
0202 O2 Sensor Monitor Bank 1 Sensor 2 0.00 1.275 volts 0.005 Lean to Rich sensor threshold voltage
0203 O2 Sensor Monitor Bank 1 Sensor 3 0.00 1.275 volts 0.005 Lean to Rich sensor threshold voltage
0204 O2 Sensor Monitor Bank 1 Sensor 4 0.00 1.275 volts 0.005 Lean to Rich sensor threshold voltage
0205 O2 Sensor Monitor Bank 2 Sensor 1 0.00 1.275 volts 0.005 Lean to Rich sensor threshold voltage
0206 O2 Sensor Monitor Bank 2 Sensor 2 0.00 1.275 volts 0.005 Lean to Rich sensor threshold voltage
0207 O2 Sensor Monitor Bank 2 Sensor 3 0.00 1.275 volts 0.005 Lean to Rich sensor threshold voltage
0208 O2 Sensor Monitor Bank 2 Sensor 4 0.00 1.275 volts 0.005 Lean to Rich sensor threshold voltage
0209 O2 Sensor Monitor Bank 3 Sensor 1 0.00 1.275 volts 0.005 Lean to Rich sensor threshold voltage
020A O2 Sensor Monitor Bank 3 Sensor 2 0.00 1.275 volts 0.005 Lean to Rich sensor threshold voltage
020B O2 Sensor Monitor Bank 3 Sensor 3 0.00 1.275 volts 0.005 Lean to Rich sensor threshold voltage
020C O2 Sensor Monitor Bank 3 Sensor 4 0.00 1.275 volts 0.005 Lean to Rich sensor threshold voltage
020D O2 Sensor Monitor Bank 4 Sensor 1 0.00 1.275 volts 0.005 Lean to Rich sensor threshold voltage
020E O2 Sensor Monitor Bank 4 Sensor 2 0.00 1.275 volts 0.005 Lean to Rich sensor threshold voltage
020F O2 Sensor Monitor Bank 4 Sensor 3 0.00 1.275 volts 0.005 Lean to Rich sensor threshold voltage
0210 O2 Sensor Monitor Bank 4 Sensor 4 0.00 1.275 volts 0.005 Lean to Rich sensor threshold voltage
Pid
(Hex)
Grąžinti duomenų baitai Aprašymas Min. reikšmė Maksimali vertė Vienetų Formulė[a]

Režimu 09

Pid
(Hex)
Grąžinti duomenų baitai Aprašymas Min. reikšmė Maksimali vertė Vienetų Formulė[a]
00 4 Režimu 9 supported PIDs (01 į 20) Šiek tiek užkoduotas. [A7. D0 (D0)] = [PID $01..PID (01..PID) $20] Žr.
01 1 VIN Message Count in PID 02. Only for ISO 9141-2, ISO 14230-4 and SAE J1850. Usually value will be 5.
02 17 Vehicle Identification Number (VIN) 17-char VIN, ASCII-encoded and left-padded with null chars (0x00) if needed to.
03 1 Calibration ID message count for PID 04. Only for ISO 9141-2, ISO 14230-4 and SAE J1850. It will be a multiple of 4 (4 messages are needed for each ID).
04 16,32,48,64.. Calibration ID Iki 16 ASCII chars. Data bytes not used will be reported as null bytes (0x00). Several CALID can be outputed (16 bytes each)
05 1 Calibration verification numbers (CVN) message count for PID 06. Only for ISO 9141-2, ISO 14230-4 and SAE J1850.
06 4,8,12,16 Calibration Verification Numbers (CVN) Several CVN can be outputed (4 bytes each) the number of CVN and CALID must match Raw data left-padded with null characters (0x00). Usually displayed as hex string.
07 1 In-use performance tracking message count for PID 08 ir 0B. Only for ISO 9141-2, ISO 14230-4 and SAE J1850. 8 10 8 if sixteen (16) values are required to be reported, 9 if eighteen (18) values are required to be reported, ir 10 if twenty (20) values are required to be reported (one message reports two values, each one consisting in two bytes).
08 4 In-use performance tracking for spark ignition vehicles 4 arba 5 messages, each one containing 4 bytes (two values). Žr.
09 1 ECU name message count for PID 0A
0A 20 ECU name ASCII-coded. Right-padded with null chars (0x00).
0B 4 In-use performance tracking for compression ignition vehicles 5 messages, each one containing 4 bytes (two values). Žr.
Pid
(Hex)
Grąžinti duomenų baitai Aprašymas Min. reikšmė Maksimali vertė Vienetų Formulė[a]
  1. ^ Jump up to:a b c d e f g h In the formula column, letters A, B, C, ir tt. represent the decimal equivalent of the first, second, third, ir tt. bytes of data. Where a (?) appears, contradictory or incomplete information was available.

Bitwise encoded PIDs

Some of the PIDs in the above table cannot be explained with a simple formula. A more elaborate explanation of these data is provided here:

Režimu 1 Pid 00

A request for this PID returns 4 bytes of data. Each bit, from MSB į LSB, represents one of the next 32 PIDs and is giving information about if it is supported.

For example, if the car response is BE1FA813, it can be decoded like this:

Hexadecimal B E 1 F A 8 1 3
Binary 1 0 1 1 1 1 1 0 0 0 0 1 1 1 1 1 1 0 1 0 1 0 0 0 0 0 0 1 0 0 1 1
Palaiko? taip No taip taip taip taip taip No No No No taip taip taip taip taip taip No taip No taip No No No No No No taip No No taip taip
PID number 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F 10 11 12 13 14 15 16 17 18 19 1A 1B 1C 1D 1E 1F 20

So, supported PIDs are: 01, 03, 04, 05, 06, 07, 0C, 0D, 0E, 0F, 10, 11, 13, 15, 1C, 1F ir 20

Režimu 1 Pid 01

A request for this PID returns 4 bytes of data, labeled A B C and D.

The first byte(A) contains two pieces of information. Bit A7 A7 (Os) (MSB of byte A, the first byte) indicates whether or not the MIL (check engine light) is illuminated. Bits A6 through A0 (Netoli viešbučio)represent the number of diagnostic trouble codes currently flagged in the ECU.

The second, third, and fourth bytes(B, C and D) give information about the availability and completeness of certain on-board tests. Note that test availability is indicated by set (1) bit and completeness is indicated by reset (0) šiek tiek.

Bit Pavadinimas Definition
A7 A7 (Os) Mil Off or On, indicates if the CEL/MIL is on (or should be on)
A6A0 (Netoli viešbučio) DTC_CNT Number of confirmed emissions-related DTCs available for display.
B7 (Netoli viešbučio b7 RESERVED Reserved (should be 0)
B3 (Netoli viešbučio) NO NAME 0 = Spark ignition monitors supported (pvz.. Otto or Wankel engines)
1 = Compression ignition monitors supported (pvz.. Diesel engines)

Here are the common bit B definitions, they are test based.

Test available Test incomplete
Components B2 B6 (Netoli viešbučio)
Fuel System B1 (Netoli viešbučio) B5 (Netoli viešbučio)
Misfire B0 (Netoli viešbučio b0 B4 (B4)

The third and fourth bytes are to be interpreted differently depending on if the engine is spark Uždegimo (pvz.. Otto or Wankel engines) arba compression ignition (pvz.. Diesel engines). In the second (B) byte, šiek tiek 3 indicates how to interpret the C and D bytes, with 0 being spark (Otto or Wankel) ir 1 (set) being compression (Diesel).

The bytes C and D for spark ignition monitors (pvz.. Otto or Wankel engines):

Test available Test incomplete
EGR System C7 (05 D7 (D7)
Oxygen Sensor Heater C6 (Netoli viešbučio) D6 (D6)
Oxygen Sensor C5 (15 D5 (D5)
A/C Refrigerant C4 (C4) D4 (D4)
Secondary Air System C3 (3 D3 (D3)
Evaporative System C2 (2 03 D2 (D2)
Heated Catalyst C1 (C1) D1 (D1)
Catalyst C0 (C0) D0 (D0)

And the bytes C and D for compression ignition monitors (Diesel engines):

Test available Test incomplete
EGR and/or VVT System C7 (05 D7 (D7)
PM filter monitoring C6 (Netoli viešbučio) D6 (D6)
Exhaust Gas Sensor C5 (15 D5 (D5)
Reserved C4 (C4) D4 (D4)
Boost Pressure C3 (3 D3 (D3)
Reserved C2 (2 03 D2 (D2)
NOx/SCR Monitor C1 (C1) D1 (D1)
NMHC Catalyst[a] C0 (C0) D0 (D0)
  1. Jump up^ NMHC may stand for Non-Methane HydroCarbons, but J1979 does not enlighten us. The translation would be the ammonia sensor in the SCR catalyst.

Režimu 1 Pid 41

A request for this PID returns 4 bytes of data. The first byte is always zero. The second, third, and fourth bytes give information about the availability and completeness of certain on-board tests. As with PID 01, the third and fourth bytes are to be interpreted differently depending on the ignition type (B3 (Netoli viešbučio)) – with 0 being spark and 1 (set) being compression. Note again that test availability is represented by a set (1) bit and completeness is represented by a reset (0) šiek tiek.

Here are the common bit B definitions, they are test based.

Test available Test incomplete
Components B2 B6 (Netoli viešbučio)
Fuel System B1 (Netoli viešbučio) B5 (Netoli viešbučio)
Misfire B0 (Netoli viešbučio b0 B4 (B4)

The bytes C and D for spark ignition monitors (pvz.. Otto or Wankel engines):

Test available Test incomplete
EGR System C7 (05 D7 (D7)
Oxygen Sensor Heater C6 (Netoli viešbučio) D6 (D6)
Oxygen Sensor C5 (15 D5 (D5)
A/C Refrigerant C4 (C4) D4 (D4)
Secondary Air System C3 (3 D3 (D3)
Evaporative System C2 (2 03 D2 (D2)
Heated Catalyst C1 (C1) D1 (D1)
Catalyst C0 (C0) D0 (D0)

And the bytes C and D for compression ignition monitors (Diesel engines):

Test available Test incomplete
EGR and/or VVT System C7 (05 D7 (D7)
PM filter monitoring C6 (Netoli viešbučio) D6 (D6)
Exhaust Gas Sensor C5 (15 D5 (D5)
Reserved C4 (C4) D4 (D4)
Boost Pressure C3 (3 D3 (D3)
Reserved C2 (2 03 D2 (D2)
NOx/SCR Monitor C1 (C1) D1 (D1)
NMHC Catalyst[a] C0 (C0) D0 (D0)
  1. Jump up^ NMHC may stand for Non-Methane HydroCarbons, but J1979 does not enlighten us. The translation would be the ammonia sensor in the SCR catalyst.

Režimu 1 Pid 78

A request for this PID will return 9 bytes of data. The first byte is a bit encoded field indicating which EGT sensors are supported:

Byte Aprašymas
A Supported EGT sensors
BC Temperature read by EGT11
DE Temperature read by EGT12
FG Temperature read by EGT13
HI Temperature read by EGT14

The first byte is bit-encoded as follows:

Bit Aprašymas
A7 A7 (Os)A4 Reserved
A3 A3 (199 EGT bank 1, sensor 4 Palaiko?
A2 -- Viešbučiai EGT bank 1, sensor 3 Palaiko?
A1 -- EGT bank 1, sensor 2 Palaiko?
A0 (Netoli viešbučio) EGT bank 1, sensor 1 Palaiko?

The remaining bytes are 16 bit integers indicating the temperature in degrees Celsius in the range -40 į 6513.5 (scale 0.1), using the usual {\ekrano stilius (A\times 256+B)/10-40} formula (MSB is A, LSB is B). Only values for which the corresponding sensor is supported are meaningful.

The same structure applies to PID 79, but values are for sensors of bank 2.

Režimu 3 (no PID required)

A request for this mode returns a list of the DTCs that have been set. The list is encapsulated using the ISO 15765-2 protocol.

If there are two or fewer DTCs (4 bytes) they are returned in an ISO-TP Single Frame (SF). Three or more DTCs in the list are reported in multiple frames, with the exact count of frames dependent on the communication type and addressing details.

Each trouble code requires 2 bytes to describe. The text description of a trouble code may be decoded as follows. The first character in the trouble code is determined by the first two bits in the first byte:

A7 A7 (Os)A6 First DTC character
00 PPowertrain
01 CChassis
10 BBody
11 UNetwork

The two following digits are encoded as 2 bitai. The second character in the DTC is a number defined by the following table:

A5 (1809)A4 Second DTC character
00 0
01 1
10 2
11 3

The third character in the DTC is a number defined by

A3 A3 (199A0 (Netoli viešbučio) Third DTC character
0000 0
0001 1
0010 2
0011 3
0100 4
0101 5
0110 6
0111 7
1000 8
1001 9
1010 A
1011 B
1100 C
1101 D
1110 E
1111 F

The fourth and fifth characters are defined in the same way as the third, but using bits B7 (Netoli viešbučio b7B4 (B4) ir B3 (Netoli viešbučio)B0 (Netoli viešbučio b0. The resulting five-character code should look something likeU0158and can be looked up in a table of OBD-II DTCs. Hexadecimal characters (0-9, A-F), while relatively rare, are allowed in the last 3 positions of the code itself.

Režimu 9 Pid 08

It provides information about track in-use performance for catalyst banks, oxygen sensor banks, evaporative leak detection systems, EGR systems and secondary air system.

The numerator for each component or system tracks the number of times that all conditions necessary for a specific monitor to detect a malfunction have been encountered. The denominator for each component or system tracks the number of times that the vehicle has been operated in the specified conditions.

The count of data items should be reported at the beginning (the first byte).

All data items of the In-use Performance Tracking record consist of two (2) bytes and are reported in this order (each message contains two items, hence the message length is 4).

Mnemonic Aprašymas
OBDCOND OBD Monitoring Conditions Encountered Counts
IGNCNTR Ignition Counter
CATCOMP1 Catalyst Monitor Completion Counts Bank 1
CATCOND1 Catalyst Monitor Conditions Encountered Counts Bank 1
CATCOMP2 Catalyst Monitor Completion Counts Bank 2
CATCOND2 Catalyst Monitor Conditions Encountered Counts Bank 2
O2SCOMP1 O2 Sensor Monitor Completion Counts Bank 1
O2SCOND1 O2 Sensor Monitor Conditions Encountered Counts Bank 1
O2SCOMP2 O2 Sensor Monitor Completion Counts Bank 2
O2SCOND2 O2 Sensor Monitor Conditions Encountered Counts Bank 2
EGRCOMP EGR Monitor Completion Condition Counts
EGRCOND EGR Monitor Conditions Encountered Counts
AIRCOMP AIR Monitor Completion Condition Counts (Secondary Air)
AIRCOND AIR Monitor Conditions Encountered Counts (Secondary Air)
EVAPCOMP EVAP Monitor Completion Condition Counts
EVAPCOND EVAP Monitor Conditions Encountered Counts
SO2SCOMP1 Secondary O2 Sensor Monitor Completion Counts Bank 1
SO2SCOND1 Secondary O2 Sensor Monitor Conditions Encountered Counts Bank 1
SO2SCOMP2 Secondary O2 Sensor Monitor Completion Counts Bank 2
SO2SCOND2 Secondary O2 Sensor Monitor Conditions Encountered Counts Bank 2

Režimu 9 PID 0B

It provides information about track in-use performance for NMHC catalyst, NOx catalyst monitor, NOx adsorber monitor, PM filter monitor, exhaust gas sensor monitor, EGR/ VVT monitor, boost pressure monitor and fuel system monitor.

All data items consist of two (2) bytes and are reported in this order (each message contains two items, hence message length is 4):

Mnemonic Aprašymas
OBDCOND OBD Monitoring Conditions Encountered Counts
IGNCNTR Ignition Counter
HCCATCOMP NMHC Catalyst Monitor Completion Condition Counts
HCCATCOND NMHC Catalyst Monitor Conditions Encountered Counts
NCATCOMP NOx/SCR Catalyst Monitor Completion Condition Counts
NCATCOND NOx/SCR Catalyst Monitor Conditions Encountered Counts
NADSCOMP NOx Adsorber Monitor Completion Condition Counts
NADSCOND NOx Adsorber Monitor Conditions Encountered Counts
PMCOMP PM Filter Monitor Completion Condition Counts
PMCOND PM Filter Monitor Conditions Encountered Counts
EGSCOMP Exhaust Gas Sensor Monitor Completion Condition Counts
EGSCOND Exhaust Gas Sensor Monitor Conditions Encountered Counts
EGRCOMP EGR and/or VVT Monitor Completion Condition Counts
EGRCOND EGR and/or VVT Monitor Conditions Encountered Counts
BPCOMP Boost Pressure Monitor Completion Condition Counts
BPCOND Boost Pressure Monitor Conditions Encountered Counts
FUELCOMP Fuel Monitor Completion Condition Counts
FUELCOND Fuel Monitor Conditions Encountered Counts

Enumerated PIDs[edit]

Some PIDs are to be interpreted specially, and aren’t necessarily exactly bitwise encoded, or in any scale. The values for these PIDs are enumerated.

Režimu 1 Pid 03[edit]

A request for this PID returns 2 bytes of data. The first byte describes fuel system #1.

Value Aprašymas
1 Open loop due to insufficient engine temperature
2 Closed loop, using oxygen sensor feedback to determine fuel mix
4 Open loop due to engine load OR fuel cut due to deceleration
8 Open loop due to system failure
16 Closed loop, using at least one oxygen sensor but there is a fault in the feedback system

Any other value is an invalid response. There can only be one bit set at most.

The second byte describes fuel system #2 (if it exists) and is encoded identically to the first byte.

Režimu 1 Pid 12

A request for this PID returns a single byte of data which describes the secondary air status.

Value Aprašymas
1 Upstream
2 Downstream of catalytic converter
4 From the outside atmosphere or off
8 Pump commanded on for diagnostics

Any other value is an invalid response. There can only be one bit set at most.

Režimu 1 Pid 1C

A request for this PID returns a single byte of data which describes which OBD standards this ECU was designed to comply with. The different values the data byte can hold are shown below, next to what they mean:

Value Aprašymas
1 OBD-II as defined by the CARB
2 OBD as defined by the EPA
3 OBD and OBD-II
4 OBD-I
5 Not OBD compliant
6 EOBD (Europe)
7 EOBD and OBD-II
8 EOBD and OBD
9 EOBD, OBD and OBD II
10 JOBD (Japonija)
11 JOBD and OBD II
12 JOBD and EOBD
13 JOBD, EOBD, and OBD II
14 Reserved
15 Reserved
16 Reserved
17 Engine Manufacturer Diagnostics (EMD)
18 Engine Manufacturer Diagnostics Enhanced (EMD+)
19 Heavy Duty On-Board Diagnostics (Child/Partial) (HD OBD-C)
20 Heavy Duty On-Board Diagnostics (HD OBD)
21 World Wide Harmonized OBD (WWH OBD)
22 Reserved
23 Heavy Duty Euro OBD Stage I without NOx control (HD EOBD-I)
24 Heavy Duty Euro OBD Stage I with NOx control (HD EOBD-I N)
25 Heavy Duty Euro OBD Stage II without NOx control (HD EOBD-II)
26 Heavy Duty Euro OBD Stage II with NOx control (HD EOBD-II N)
27 Reserved
28 Brazil OBD Phase 1 (OBDBr-1)
29 Brazil OBD Phase 2 (OBDBr-2)
30 Korean OBD (KOBD)
31 India OBD I (IOBD I)
32 India OBD II (IOBD II)
33 Heavy Duty Euro OBD Stage VI (HD EOBD-IV)
34-250 Reserved
251-255 Not available for assignment (SAE J1939 special meaning)

Fuel Type Coding

Režimu 1 Pid 51 returns a value from an enumerated list giving the fuel type of the vehicle. The fuel type is returned as a single byte, and the value is given by the following table:

Value Aprašymas
0 Not available
1 Gasoline
2 Methanol
3 Ethanol
4 Diesel
5 LPG
6 CNG
7 Propane
8 Electric
9 Bifuel running Gasoline
10 Bifuel running Methanol
11 Bifuel running Ethanol
12 Bifuel running LPG
13 Bifuel running CNG
14 Bifuel running Propane
15 Bifuel running Electricity
16 Bifuel running electric and combustion engine
17 Hybrid gasoline
18 Hybrid Ethanol
19 Hybrid Diesel
20 Hybrid Electric
21 Hybrid running electric and combustion engine
22 Hybrid Regenerative
23 Bifuel running diesel

Any other value is reserved by ISO/SAE. There are currently no definitions for flexible-fuel vehicle.

Non-standard PIDs

The majority of all OBD-II PIDs in use are non-standard. For most modern vehicles, there are many more functions supported on the OBD-II interface than are covered by the standard PIDs, and there is relatively minor overlap between vehicle manufacturers for these non-standard PIDs.

There is very limited information available in the public domain for non-standard PIDs. The primary source of information on non-standard PIDs across different manufacturers is maintained by the US-based Equipment and Tool Institute and only available to members. The price of ETI membership for access to scan codes varies based on company size defined by annual sales of automotive tools and equipment in North America:

Annual Sales in North America Annual Dues
Pagal $10,000,000 $5,000
$10,000,000 – $50,000,000 $7,500
Greater than $50,000,000 $10,000

However, even ETI membership will not provide full documentation for non-standard PIDs. ETI state:[4][5]

Some OEMs refuse to use ETI as a one-stop source of scan tool information. They prefer to do business with each tool company separately. These companies also require that you enter into a contract with them. The charges vary but here is a snapshot as of April 13th, 2015 of the per year charges:

GM $50,000
Honda $5,000
Suzuki $1,000
BMW $25,500 plius $2,000 per update. Updates occur annually.

GALI (11-šiek tiek) bus format

The PID query and response occurs on the vehicle’s CAN bus. Standard OBD requests and responses use functional addresses. The diagnostic reader initiates a query using CAN ID 7DFh[clarification needed], which acts as a broadcast address, and accepts responses from any ID in the range 7E8h to 7EFh. ECUs that can respond to OBD queries listen both to the functional broadcast ID of 7DFh and one assigned ID in the range 7E0h to 7E7h. Their response has an ID of their assigned ID plus 8 pvz.. 7E8h through 7EFh.

This approach allows up to eight ECUs, each independently responding to OBD queries. The diagnostic reader can use the ID in the ECU response frame to continue communication with a specific ECU. In particular, multi-frame communication requires a response to the specific ECU ID rather than to ID 7DFh.

CAN bus may also be used for communication beyond the standard OBD messages. Physical addressing uses particular CAN IDs for specific modules (pvz., 720h for the instrument cluster in Fords) with proprietary frame payloads.

Query

The functional PID query is sent to the vehicle on the CAN bus at ID 7DFh, using 8 data bytes. The bytes are:

Byte
PID Type 0 1 2 3 4 5 6 7
SAE Standard Number of
additional
data bytes:
2
Režimu
01 = show current data;
02 = freeze frame;
ir tt.
PID code
(pvz.: 05 = Engine coolant temperature)
not used
(may be 55h)
Vehicle specific Number of
additional
data bytes:
3
Custom mode: (pvz.: 22 = enhanced data) PID code
(pvz.: 4980h)
not used
(may be 00h or 55h)

Response

The vehicle responds to the PID query on the CAN bus with message IDs that depend on which module responded. Typically the engine or main ECU responds at ID 7E8h. Other modules, like the hybrid controller or battery controller in a Prius, respond at 07E9h, 07EAh, 07EBh, ir tt. These are 8h higher than the physical address the module responds to. Even though the number of bytes in the returned value is variable, the message uses 8 data bytes regardless (CAN bus protocol form Frameformat with 8 data bytes). The bytes are:

Byte
PID Type 0 1 2 3 4 5 6 7
SAE Standard
7E8h,
7E9h,
7EAh,
ir tt.
Number of
additional
data bytes:
3 į 6
Custom mode
Same as query, except that 40h is added to the mode value. So:
41h = show current data;
42h = freeze frame;
ir tt.
PID code
(pvz.: 05 = Engine coolant temperature)
value of the specified parameter, byte 0 value, byte 1 (neprivaloma) value, byte 2 (neprivaloma) value, byte 3 (neprivaloma) not used
(may be 00h or 55h)
Vehicle specific
7E8h, or 8h + physical ID of module.
Number of
additional
data bytes:
4į 7
Custom mode: same as query, except that 40h is added to the mode value.(pvz.: 62h = response to mode 22h request) PID code
(pvz.: 4980h)
value of the specified parameter, byte 0 value, byte 1 (neprivaloma) value, byte 2 (neprivaloma) value, byte 3 (neprivaloma)
Vehicle specific
7E8h, or 8h + physical ID of module.
Number of
additional
data bytes:
3
7Fh this a general response usually indicating the module doesn’t recognize the request. Custom mode: (pvz.: 22h = enhanced diagnostic data by PID, 21h = enhanced data by offset) 31h not used
(may be 00h)

Benz 14pin – 16PIN

Nissian 14 PIN – 16PIN

GM12 PIN-16PIN

DB9-16 PIN

iveco 38pin -16 PIN

Fiat 3 PIN – 16 PIN

Toyato 22pin – 16 PIN

KIA 20 PIN – 16 PIN

Audi 2×2 – 16 PIN

Benz 38 PIN

Mitsubishi 12 PIN – 16PIN

Honda 3pin – 16PIN

BMW 20 PIN – 3 PIN

Subaru 9 PIN – 16 PIN

Chrysler 6 PIN